Example 1:
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class MergeIntervals {
public static int[][] merge(int[][] intervals) {
Arrays.sort(intervals, (a, b) -> a[0] - b[0]);
List<int[]> merged = new ArrayList<>();
for (int[] interval : intervals) {
if (merged.isEmpty() || merged.get(merged.size() - 1)[1] < interval[0]) {
merged.add(interval);
} else {
merged.get(merged.size() - 1)[1] = Math.max(merged.get(merged.size() - 1)[1], interval[1]);
}
}
return merged.toArray(new int[merged.size()][]);
}
public static void main(String[] args) {
int[][] intervals = {{1, 3}, {2, 6}, {8, 10}, {15, 18}};
int[][] result = merge(intervals);
System.out.println(Arrays.deepToString(result));
}
}
Explanation:
- We sort the intervals based on the start time, which takes O(n log n) time complexity.
- Then, we iterate through the sorted intervals once, which takes O(n) time complexity.
- Within the iteration, the operations performed for merging the intervals are constant time operations.
- So, the overall time complexity of the program is O(n log n), where n is the number of intervals.
- The space complexity is O(n) to store the merged intervals.